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The design of electrical machines often requires the precise evaluation of the iron losses occurring in their core. This can be
achieved by using the finite element technique with a hysteresis model to represent the magnetic properties of the iron core. The
Preisach model is known in the literature to accurately model this behavior, however its high computational cost limits its use,
especially in 3-D applications. This, paper presents a way to significantly improve the computational efficiency of the 3-D vector
Preisach model by using a proper mathematical formulation and carefully implementing it.
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I. INTRODUCTION

THE STEADY gain in computational capabilities in the
last decades has allowed for the numerical modelling of

increasingly complex problems in electromagnetism by using
the finite element (FE) method among others. In particular,
the modelling of vector hysteresis to represent the behavior
of magnetic materials in 3-D FE simulations has recently
been achieved [1]. Most cases of vector hysteresis modelling
reported in the literature usually use the Jiles-Artherton model
because of its relative ease of implementation and good nu-
merical performances. However, many comparative studies [2]
have shown that the Preisach model (PM) provides more
accurate results than the Jiles-Atherton model. Although these
studies were conducted in the case of scalar hysteresis, a
general vector extension of the Preisach model was introduced
by Mayergoyz [3]. This vector extension of the PM using
Mayergoyz’s technique has already been successfully tested in
2-D FE [4], but its application in 3-D remains challenging be-
cause of its prohibitively high computation costs and memory
requirements. This issue is the focus of this paper.

We first present a mathematical formulation of the vector
PM based on Mayergoyz’s method with a sight modification
that allows the material to be initialized in a perfectly demag-
netized state. Then, some considerations regarding the efficient
numerical implementation of the model are discussed.

II. PREISACH MODEL: MATHEMATICAL FORMULATION

The vector extension of the PM proposed by Mayergoyz
consists in calculating the magnetization vector M as a sum of
numerous scalar PM oriented in different directions. Therefore,
it is essential to begin with the presentation of the scalar PM
since it is the basis to construct the vector extension.

A. The Scalar Preisach Model

The classical scalar PM relates the magnetization M to
the magnetic field H . It can be formulated using the Everett

Fig. 1. The (αk, βk) coordinates associated with the magnetic field history
define a staircase shaped boundary in the αβ domain, separating the positive
and negative contributions to the magnetization.

function as

M(H) = −E(α0, β0) + 2

n∑
k=1

[E(αk, βk−1)− E(αk, βk)] ,

(1)
where (α0, β0) = (Hsat,−Hsat), (αn, βn) = (H,H) and
(αk, βk) is associated with the kth local extremum of decreas-
ing amplitude in the magnetic field history (see Fig. 1). The
magnetic field at saturation Hsat is the value of magnetic field
where the two branches of the major hysteresis loop merge.

One issue with this formulation in the context of FE mod-
elling is that, in order to initialize a magnetic material in its
demagnetized state (i.e. M(H) = 0), one would in theory
need an infinite number of points (αk, βk) along the α = −β
diagonal. In practice one would typically approximate the
demagnetized state with a large number (αk, βk) points in the
history, which is not only inaccurate, but also very costly in
terms of memory. The solution we propose to fix this problem
is to redefine (α0, β0) as

(α0, β0) = (Hmax,−Hmax) (2)

where
Hmax = max

t′∈[0,t]
|H(t′)| . (3)

That way, we can initialize the material in a perfectly demagne-
tized state with a single point in the history (α0, β0) = (0, 0),



while effectively assuming an infinite number of virtual points
along the α = −β diagonal.

B. The Vector Preisach Model
The 3-D vector PM proposed by Mayergoyz in [3] consist

in integrating the contributions of an infinite number of scalar
PM spanning every possible orientation.

In spherical coordinates, for an orientation defined by the
unit vector eθ,ϕ, the projection of the magnetic field vector
onto this orientation is

Hθ,ϕ = eθ,ϕ ·H . (4)

The contribution from this orientation, noted Mθ,ϕ, is calcu-
lated using (1) with Hθ,ϕ as input. Then, by integrating the
contribution from every orientation, we get

M(H) =
1

2π

∫ 2π

0

∫ π
2

0

eθ,ϕMθ,ϕ(Hθ,ϕ) sin θ dθ dϕ . (5)

III. NUMERICAL IMPLEMENTATION

The numerical implementation of the 3-D vector PM comes
down to the evaluation of (5), which requires the computation
of a certain number of scalar PM distributed in different
orientations using (1). Therefore, in order to optimize the nu-
merical performance of the vector PM, we must first minimize
the number of orientations (of scalar PM) that need to be
computed, and then, optimize the numerical performance of
the scalar PM.

Firstly, we discretize the integral over the surface of the unit
hemisphere in (5) using the Lebedev quadrature [5]. Thus, we
can approximate the vector PM as

M(H) ≈ 1

2π

NL∑
i=1

wi eθi,ϕiMθi,ϕi(Hθi,ϕi) , (6)

where NL is the number of points in the quadrature and
therefore the number of scalar PM that must be computed.
There is obviously a trade off to be made here between
computational speed and precision, however we found that
using a Lebedev quadrature of 7th order, for which NL = 13,
leads to good results.

In the case where the Everett function is evaluated using an
analytic function instead of interpolating experimental data, we
can extract the reversible component of the magnetization from
the Everett function. By doing so, the reversible component is
only computed once instead of 13 times, and it is not affected
by the limited precision of the Lebedev quadrature.

Secondly, regarding the numerical performance of the scalar
PM, other than implementing the perfectly demagnetized for-
mulation (see Sec. II-A), we can also optimize the computation
of (1) by reducing the number of evaluations of the Everett
function. Indeed, due to the staircase shape of the Preisach
boundary, we notice that for roughly half the terms, βk−1 = βk
and therefore [E(αk, βk−1) − E(αk, βk)] = 0. Furthermore,
we can take advantage of the fact that at most time steps, only
the coordinates (αn−1, βn−1) and (αn, βn) are modified in the
history (white dots in Fig. 1). Thus, storing the value of the
partial sum in (1) up to n − 2 avoids a lot of unnecessary
computations.
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Fig. 2. The magnetic field gradually saturates the material in the first half of
the simulation and demagnetizes it in the second half.

IV. RESULTS

To quantify the speed-up provided by the various imple-
mentation techniques proposed, we implemented five different
variations of the vector PM. Every model was initialized in the
demagnetized state, using either a regular staircase Preisach
boundary along the α = −β diagonal composed of 16 points
(models A, B, and C) or the proposed perfectly demagnetized
formulation (models D and E). In every case, the Lebedev
quadrature of 7th order with 13 orientations was chosen. The
Everett function was computed using an analytical formula. We
simulated the response of the models subject to an alternating
magnetic field of varying amplitude display in Fig. 2. The
results for this test are presented in table I.

TABLE I
GAIN IN NUMERICAL PERFORMANCE

Model description relative cpu
time

memory*
(bytes)

A) Basic implementation (Reference) 1.000 403
B) Reversible-irreversible seperation 0.556 403
C) Efficient summation in Eq. (1) 0.098 416
D) Perfect demagnetization 0.252 39
E) Combination of B, C and D 0.047 52
* Memory per calculation node at initialization

As the results indicate, an efficient numerical implementa-
tion of the vector PM allows for significant speed-ups and
memory reductions. Indeed, the computation time for the final
model was less than 5% than that of the original one, and the
memory required to initialize the material in the demagnetized
state was reduced by an order of magnitude.
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[2] A. Benabou, S. Clénet, and F. Piriou. Comparison of Preisach and Jiles-
Atherton models to take into account hysteresis phenomenon for finite
element analysis. Journal of Magnetism and Magnetic Materials, 261(1-
2):139–160, 2003.

[3] Isaak Mayergoyz. Mathematical Models Of Hysteresis And Their Appli-
cations. Elsevier, New York, 1 edition, 2003.

[4] J. Gyselinck, M. De Wulf, L. Vandevelde, and J. A. Melkebeek. In-
corporation of vector hysteresis and eddy current losses in 2D FE
Magnetodynamics. Proceedings of ELECTRIMACS, 99(9):37–44, 1999.

[5] V. I. Lebedev. Values of the nodes and weights of ninth to seventeenth
order gauss-markov quadrature formulae invariant under the octahedron
group with inversion. USSR Computational Mathematics and Mathemat-
ical Physics, 15(1):44–51, 1975.


	Introduction
	Preisach Model: Mathematical Formulation
	The Scalar Preisach Model
	The Vector Preisach Model

	Numerical Implementation
	Results
	References

